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Covariant Hamiltonian Formalisms for Particles
and Antiparticles
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The hyperplane and proper time formalisms are discussed mainly for spin-half
particles in the quantum case. A connection between these covariant Hamiltonian
formalisms is established. It is shown that by choosing the spacelike hyperplanes
instantaneously orthogonal to the direction of motion of the particle allows one
to retrieve the proper time formalism on the mass shell. As a consequence, the
relation between the StuÈ ckelberg ±Feynman picture and the standard canonical
picture of quantum field theory is clarified.

1. INTRODUCTION

The unification of the principles of relativity and quantum mechanics

presents a serious obstacle. On the one hand, as from the seminal work of

Minkowski (1908), the first theory deals with space and time on an equal

footing: ª Space by itself, and time by itself, are doomed to fade away into

mere shadows, and only a kind of union of the two will preserve an indepen-
dent reality.º

On the other hand, the principles of quantum mechanics, originally

developed in a canonical formalism, have broken this symmetry by choosing

the coordinate time of a given frame of reference to label the evolution of

the system. Therefore the standard canonical formalism does not provide a

relativistic invariant description of the dynamical evolution of the system.
Moreover, in this framework it is not possible to describe simultaneously

particles and antiparticles at a first-quantized level.

Different covariant formalisms have been proposed to overcome these

obstacles. Significant advances were obtained when the problem of reformu-
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lating the old canonical theory of quantum electrodynamics was addressed.

Two kinds of solutions were presented at the Pocono conference half a century

ago (Schweber, 1986; Mehra, 1994), one by Schwinger (1948), who, like
Tomonaga (1946), essentially generalized the standard canonical formalism

of quantum field theory to arbitrary spacelike surfaces, and another, containing

more radical changes, by Feynman (1951) (see also Schweber, 1986; Mehra,

1994). Feynman’ s ideas, like StuÈ ckelberg’ s (1941a, b, 1942), dealt with the

space-time trajectories of charged particles, and were essentially formulated

at a first-quantized level.
In this work we recall such ideas in order to discuss the covariant

Hamiltonian formalism for relativistic particles. We shall focus on the Fleming

hyperplane formalism (Fleming, 1965, 1966), closely related to the Tomo-

naga±Schwinger ideas,2 and the Feynman proper time formalism, with the

aim of establishing a bridge between them. This will clarify many misunder-

stood issues of the connection between the standard canonical picture and
the Feynman space-time picture, from the Feynman point of view.3

The main purpose of this work is to discuss Feynman’ s formalism for

relativistic spin-1/2 particles in the quantum case (Sections 4 and 5), but for

pedagogical reasons we begin by discussing the problem at the classical level

for the spinless relativistic particle in Sections 2 and 3.
Throughout this work we use natural units ( " 5 c 5 1). Our convention

for the metric is

ds2 5 h m n dx m dx n , h m n 5 diag(1, 2 1, 2 1, 2 1) (1)

2. THE CLASSICAL RELATIVISTIC PARTICLE IN THE
HYPERPLANE

The standard canonical formalism usually considers particle states only.

Let us go beyond this formalism by using the Hamiltonian

H 5 e ! m 2 1 p2 (2)

where e is 1 1 and 2 1 for particles and antiparticles, respectively. In this

way we adopt StuÈ ckelberg’ s (1941a, b, 1942) and Feynman’ s (1948, 1949)

ideas introducing the concept of antiparticles at the classical level as negative

energy states going backward in coordinate time.4 As we stressed above, the

canonical formalism privileges the temporal coordinate x 0 of a reference

2 See Jauch and Rohrlich (1976) for a list of references about formalisms involving arbitrary
spacelike surfaces.

3 From the canonical point of view, this connection was established by Dyson (1948).
4 Such a notion can be also used for deriving the Dirac equation from first principles (Gaioli
and Garcia Alvarez, 1995).
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frame in order to describe the evolution, the one in which H is the temporal

component of the four-momenta p m 5 (H, 2 p). In other words, for each

reference frame we have a different Hamiltonian which generates the dynami-
cal evolution of the system in the corresponding coordinate time. The key

idea of the hyperplane formalism is to unify such a multiplicity of dynamical

descriptions by taking the temporal coordinate of a privileged frame, t , for

labeling the dynamics. This choice can be written in an invariant language

as follows: Space-time is foliated with a family of spacelike surfaces n m x m

2 t 5 0 (the hyperplanes) characterized by a normalized vector n m (n m n m 5
1) orthogonal to the surfaces

n m 5
- x m

- t
(3)

We have chosen the normal vector n m in the direction of the future light

cone. Following this convention, the components of the temporal vector n m

take the simple form (n t )
m 5 (1, 0, 0, 0) in the coordinates (x t )

m 5 ( t , x t )

of the privileged frame. Of course, the choice of such a privileged foliation,

in order to label the dynamics, is arbitrary. Usually, each observer adopts his

canonical foliation, the one corresponding to coordinate time. But at this
point the hyperplane formalism dissociates the dual (geometrical and dynami-

cal) role of the temporal coordinates of the different reference systems. Each

temporal coordinate retains its geometrical role, but only one (arbitrarily

chosen) adopts the dynamical one. Note that in this sense the time t registered

by the privileged coordinate frame is an absolute scalar parameter. That is,

any lapse of t (P1) 2 t (P2) corresponding to two events at points P1 and P2

in space-time is (by definition) independent of the coordinate systems chosen.5

As a consequence, its conjugate variable, the Hamiltonian H (n), is also scalar,

which becomes evident writing it as6

H (n) 5 n m p m (4)

In this way the hyperplane formalism describes the evolution of the

system from any coordinate system in a covariant way. However, note that
the multiplicity of dynamical descriptions of the standard canonical formalism

discussed above was not lost. It is hidden in the arbitrary choice of n m . The

only thing that has been improved is that now the canonical formalism is

independent of the coordinate system chosen. That is, the canonical formalism

provides a relativistic invariant description of the dynamical evolution of

the system.

5 What is relative is the lapse in the time cooordinates, i.e., for two systems S and S8, x 0(P1) 2
x 0(P2) Þ x 0(P1) 2 x 0(P2).

6 Notice also that particle and antiparticle concepts are interchanged if we reverse the direction
of n m .



246 Garcia Alvarez and Gaioli

Although the expression (4) looks explicitly covariant, the canonical

formalism is rather complicated because the variables p m are not independent,

since they satisfy the mass-shell constraint

p m p m 5 m 2 (5)

An alternative expression for (4) can be obtained in terms of the canonical

momentum p t conjugate to the hyperplane coordinates x t . Using (2) in coordi-

nates ( t , x t ), we have

H (n) 5 e ! m 2 1 p m (n)p m (n) (6)

where7

p m (n) 5 p m 2 n m (n n p n ) (7)

is the four-vector associated with p t [which in the coordinates of the privileged

frame reads ( p t )
m (n) 5 (0, p t )]. However, the new momentum variables do

not simplify the problem, because they also satisfy a constraint

p m (n)n m 5 0 (8)

since p m (n) is the projection of p m to the hyperplane t 5 0.

Notice also that the covariant Poisson brackets,

{ f, g}xp [
- f

- x a
- g

- p a
2

- g

- x a
- f

- p a

of (7) with the four-vector

x m (n) 5 x m 2 n m (n n x n ) (9)

associated with x t , is not canonical

{x m (n), p n (n)}xp 5 h m n 2 n m n n (10)

We will return to this kind of problem later.

Up to this point, we have not removed the undesirable arbitrariness in

the choice of n m . In the case of the free particle the only four-vector that

gives a privileged direction in space-time is the four-velocity (which for a
spinless particle also coincides with the direction of its four-momentum8).

We can remove the arbitrariness by choosing

n m 5 e
dx m

ds
5 e

p m

m
(11)

7 The expression (6) was generalized to a curved space-time by Ferraro et al. (1987).
8 This is not the case in general when the particle has spin. See, for example, Corben (1961, 1968).
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which identifies the canonical variable t with the proper time of the particle,

t 5 e s , ds 5 e ! 1 2 v2 dx0 (12)

since this choice imposes our privileged system to be a system in which the

particle is at rest.9 Using (11) and the constraint (5) in (4), we have

H (n) 5 e m 5 e ! p m p m (13)

which shows that for particles the conjugate variable of t becomes the rest

mass m.

3. THE PROPER TIME FORMALISM FOR CLASSICAL
SPINLESS PARTICLES

Recently Hall and Anderson (1995) proposed a covariant Hamiltonian

formalism for a relativistic particle based on a square-root super-Hamiltonian

* 5 ! p m p m (14)

which resembles expression (13), but with the four-momentum p m not

restricted to the mass shell (* behaves as a positive variable mass). Such a
formalism originally developed by Moses (1969) and Johnson (1969) and

more recently discussed by Evans (1990), Hannibal (1991a), and us (Aparicio

et al. 1995a, b) is a formalism free from constraints in which the invariant

evolution parameter is identified with the proper time. In this framework, in

contrast with (10), we have covariant commutation relations

{x m , p n }xp 5 h m n (15)

However, we must deal with an indefinite-mass system10 in such a way that

the standard notion of definite-mass particles and antiparticles are recovered
by specifying the initial conditions.

Hall and Anderson’ s approach is interesting because, in spite of postulat-

ing the form of the Hamiltonian, they derive * in a constructive way by

imposing physical requirements.

Their argument flows as follows: Let us assume a four-dimensional

Hamiltonian formalism whose equations of motion read

dx m

d l
5

- *

- p m
,

dp m

d l
5 2

- *

- x m
(16)

where l is an invariant evolution parameter and * 5 *(x, p) is the covariant

9 Note that s is the proper time for both particles and antiparticles, since, according to StuÈ ckel-
berg, for antiparticles dx0 , 0.

10 Notice that (15) is incompatible with the mass-shell constraint (5).
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Hamiltonian. Let us assume that the invariant evolution parameter can be

identified with the proper time,

l 5 s (17)

Such a condition, in principle, allows us univocally to determine the form
of the free spinless Hamiltonian. In this case space-time homogeneity imposes

that * cannot explicitly depend on x m , so * 5 *( p m ), and the condition of

being a scalar under Lorentz transformations leads * to be an arbitrary

function of p 5 ! h m n p
m p n , the only scalar that we can form with the available

tensors of the theory. Using the equations of motion, we can write the
constraint

h m n
dx m

ds

dx n

ds
5 1 (18)

as

h m n
- *

- p m

- *

- p n
5 1 (19)

or, taking into account that - */ - p m 5 (d*/dp) p m /p, as

1 d*

dp 2
2

5 1 (20)

Finally, the differential equation (20) can be easily integrated to give

* 5 6 p (21)

which is the Moses±Johnson Hamiltonian. The four-velocity associated with
this Hamiltonian is

dx m

ds
5 6

p m

p
(22)

an equation which shows that for positive mass states we have l 5 s, with

the sign specified in equation (12).

Hall and Anderson have also generalized this argument for the case in

which the theory admits another four-vector t m , giving in this case a Hamilto-
nian of the type11

* 5 t m p m (23)

11 Note that the new Hamiltonian is a particular case of the Hamiltonian (23) for t m 5 6 p m /p.
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This * is admissible provided that the norm of t m satisfies

t m t m 5 1 (24)

The equation of motion of the four-velocity is

dx m

d l
5 t m (25)

so the constraint (18) is equivalent to condition (24). We also remark the

analogy of Hamiltonians (4) and (23). In the conclusion of their work Hall

and Anderson speculate on the possibility of incorporating spin from such a

generalization. At the end of this work we show that this conjecture can be

crystallized by relaxing the normalization condition (24), by choosing t m as
the Dirac matrix g m .

4. THE DIRAC EQUATION IN THE HYPERPLANE
FORMALISM

In this section we review the hyperplane formalism for a quantum

spinning particle described by the Dirac equation,

g n i - n c (x) 5 m c (x) (26)

(Hammer et al., 1968), with the aim of establishing a connection with the
proper time formalism in an analogous way to the one discussed at the end

of Section 2. Then our purpose is to translate the Hamiltonian form of

equation (26),

i - 0 c (x) 5 ( a ? p 1 b m) c (x) (27)

( p m 5 i - m ) into an arbitrary hyperplane.

There are two ways for doing this, depending on whether we take

equation (26) or equation (27) as a starting point. We begin by discussing the

first possibility, proposed by Czachor (1995), which is more straightforward.
Multiplying both members of equation (26) by g n and taking into account

the identity g m g n 5 h m n 2 i s m n , we have (KaÂlnay and MacCotrina, 1968)

i - m c (x) 5 (i s m n p n 1 m g m ) c (x) (28)

Now contracting equation (28) with n n , we finally obtain (Czachor, 1995)

i
- c (x)

- t
5 n m (i s m n p n 1 m g m ) c (x) (29)
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where we have used the chain rule and (3)

- c
- t

5
- c
- x m

- x m

- t
5 n m - m c

The original derivation of Hammer et al. (1968) follows a similar argument

to the one used for obtaining expression (6). It departs from equation (27)
in the privileged reference system and rewrites this equation in a covariant

way. Adapted to our notation and conventions, the Hammer±MacDonald±

Pursey equation reads

i
- c
- t

5 H (n) c (30)

H (n) 5 [ a m (n)p m (n) 1 b (n)m]

where a m (n) and b (n) are the four-vector and scalar matrixes associated with

the Dirac matrixes a i and b in the privileged frame, namely

a m (n) 5 i s m n n n (31)

b (n) 5 n m g m

[This can be easily checked by remembering that (n t )
m 5 (1,0,0,0)].

The parameter t is, in general, unrelated to the proper time but, as
discussed above, classically one can always choose the coordinate system in

such a way that e n m can be identified with the velocity of the particle

dx m /ds 5 p m /m ( p m 5 p m 2 eA m ). Then e t coincides with s. The same

identification cannot be made at the quantum level in general, because the

concept of trajectory is lost. However, in the free case we can argue that this

identification makes sense for the eingenstates of the momentum operator

p m c k(x) 5 k m c k(x) (32)

At least in this case, the second member of the second equality in equation

(11) is well defined.12 By choosing n m 5 e k m /m, the first term in the second

member of equation (29) vanishes, and we finally obtain

i
- c k(x)

- s
5 p m g m c k(x) , s 5 e t (33)

Equation (33) resembles the Feynman parametrization of the Dirac equation

(Feynman, 1951). However, note that the whole formalism discussed here is
restricted to the mass shell (k m k m 5 m 2), since c k(x) satisfies the Dirac

12 However, note that this is not the case in the presence of interactions because we have no
chance to have a common basis which diagonalizes the four-vector operator p m

since [ p m , p n ] 5 2 ieF m n .
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equation (26). In the next section we briefly discuss the formalism associated

with an equation like (33) out of the mass shell.

5. THE PROPER TIME PARAMETRIZATION OF THE DIRAC
EQUATION

Feynman in 1948, in his dissertation at the Pocono conference (Feynman,
1951; Schweber, 1986; Mehra, 1994), introduced a fifth parameter in the

Dirac equation13

2 i
- C (x, s)

- s
5 * C (x, s) (34)

* 5 p m g m

to formulate a manifestly covariant (multiple-time) formalism of quantum

electrodynamics.
Equation (34) is a SchroÈ dinger-like equation in which the scalar Hamilto-

nian * plays the role of a mass operator. Notice that we retrieve the Dirac

equation as an eigenvalue equation, * C m 5 m C m , for stationary states

C m(x, s) 5 C m(x, 0)eims. The evolution operator

U 5 e ip m g m s (35)

is unitary in the indefinite scalar product

^ C , F & 5 # C (x) F (x) d 4x (36)

The ª normº is positive and negative for particle and antiparticle states,
respectively (Gaioli and Garcia Alvarez, 1993). Moreover, such indefiniteness

has its root in the StuÈ ckelberg picture, i.e., it can be shown that at the

semiclassical level (Gaioli and Garcia Alvarez, 1996)

sign [ C (x, s) C (x, s)] 5 sign
dx0

ds
(37)

The evolution of any operator A in the Heisenberg picture is given by

dA

ds
5 2 i [*, A] (38)

which is the proper time derivative originally proposed by Beck (1942).

13 The difference between the sign of equation (33) and the sign of equation (34) is a consequence
of having considered different starting points. While equation (33) is a direct covariant
generalization of equation (27) in the hyperplane formalism, equation (34) is motivated by
an off-shell proper time formalism, which for the spatial components preserves the standard
results (Aparicio et al., 1995a).
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During the last 50 years, this kind of parametrization and the proper

time derivative have been rediscovered or discussed by many authors from

different motivations (Nambu, 1950; Enatsu, 1954; Davidon, 1955; Proca,
1954, 1955; GuÈ rsey, 1957; Peres and Rosen, 1960; Szamosi, 1961, 1963;

Rafanelli, 1967a, b, 1968, 1970; DeVos and Hilgevoord, 1967; Bunge and

KaÂlnay, 1969; KaÂlnay and MacCotrina, 1969; Johnson, 1971; Johnson and

Chang, 1974; LoÂpez and PeÂrez, 1981; Herdergen, 1982; Kubo, 1985; Sherry,

1989; Hannibal, 1991a, 1994; Grossmann and Peres, 1963; Schwinger, 1975;

Rumpf, 1979; Barut, 1988; Barut and Thacker, 1985; Barut and Pavsik, 1987;

Evans, 1990; Fanchi, 1993a, b; Czachor and Kuna, 1997).

In previous work (Aparicio et al., 1995a) we established the connection

between the derivative (38) and other proper time derivatives discussed in

the literature.14 We have concluded that this is the most satisfactory approach

for incorporating the notion of proper time into the Dirac theory at the

quantum level. In other works we have discussed the interpretation of the

formalism (Aparicio et al., 1995b; Gaioli and Garcia Alvarez) and the de

Sitter invariance of equation (34) (Garcia Alvarez and Gaioli, 1997a, b). For

the sake of completeness, we review in this section some points necessary

to understand the material discussed in the previous ones.

We begin by noticing that in equation (34) the coordinate time x 0 has

been elevated to the status of an operator, canonically conjugate to the energy

p 0. Their commutation relation and the standard canonical one for the three-

position and momentum can be summarized in the covariant commutation

relation

[x m , p n ] 5 2 i h m n (39)

which is the quantum analogue of equation (15). It is possible because, as

in the formalism of Section 3, the mass-shell constraint (5) satisfied by the

irreducible representations of the PoincareÂgroup is no longer valid. In this

case, there is a new dynamical group of symmetries that enlarges the PoincareÂ

group, that is, the de Sitter group, which could have been taken as the starting

point to obtain the Feynman parametrization (Garcia Alvarez and Gaioli,

1997a, b). Here we have followed the heuristic argument given in Section 4

to obtain the form of a covariant Hamiltonian conjugate to the proper time

s on the mass shell and then we extrapolated this form out of the mass shell.

We conclude this section by giving an independent argument which shows

that the operator p m g m determines the evolution of the system in the proper

time s.

14 See Fanchi (1993b) for a review of different proposals.
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Using (38), for A 5 x m , and (39) we obtain the covariant generalization

of Breit’s (1928, 1931) formula

dx m

ds
5 g m (40)

Projecting this equation of motion on positive and negative mass states,

for eliminating the covariant Zitterbewegung, by means of the projectors

L 6 [
1

2 1 1 6
*

! *2 2 (41)

L 6 * L 6 5 6 L 6 ! p m p m L 6 (42)

we have

L 6
dx m

ds
L 6 5 6 L 6

p m

! p m p m
L 6 (43)

The projected Hamiltonian and four-velocity are analogues of (21) and (22),

respectively, which on the positive mass shell leads us to the identification

of the evolution parameter with the proper time. Moreover, we see that

eliminating the interference between positive and negative states, we have
the analogue of the proper time constraint (18), namely

L 6
dx m

ds
L 6 L 6

dx m

ds
L 6 5 L 6 (44)

6. FURTHER REMARKS AND CONCLUSIONS

Summarizing, the standard canonical formalism has two difficulties:

(a) It does not provide a relativistic invariant description of the dynamical
evolution of the system.

(b) It does not enable us to include simultaneously particles and antiparti-

cle states.

The problem (a) arises because the coordinate time is not a Lorentz

scalar, and (b) is due to the fact that particles and antiparticles go forward

and backward in this time, respectively. Then the coordinate time is not able
to describe processes involving both species simultaneously. The standard

canonical formalism of quantum field theory is a many-particle formalism

with negative and positive charges for the particles and antiparticles, respec-

tively.15 Such a picture reinterprets the notion of antiparticle of the StuÈ ckelberg

15 This double sign of the charge has its correlate in the double sign of the kinetic energy,
dx0/ds 5 e ! m 2 1 p 2/m, in the Feynman±StuÈ ckelberg picture, while the sign of the energy
and the charge is kept unaltered in the standard picture and in the StuÈ ckelberg one, respectively.
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picture by reversing the direction of its space-time trajectory, which is equiva-

lent to taking the conjugate of its charge.16

The first difficulty (a) is removed by the Fleming formalism, but there
is a price to be paid:

(a8) It has an arbitrariness in the choice of the privileged system.

We have shown that as soon as we try to remove this arbitrariness by

choosing n m 5 e dx m /ds, we get the proper time formalism on the mass shell.

But in this case difficulty (b) remains. We have to label the dynamics with

the time s 5 e t (in this case t is the proper time of the particle) to have the
same label for both particles and antiparticles, a solution which naturally

arises in the proper time formalism out of the mass shell.

The last discussion suggests to us how to remove difficulty (b) at the

level of the hyperplane formalism. One could label the dynamics with j 5
e t . In this case the Hamiltonian corresponding to equation (4) and to the

Dirac equation in the hyperplane, reads

H j (n) 5 e n m p m (45)

i
- c (x)

- j
5 e n m (i s m n p n 1 m g m ) c (x) (46)

Note that the new Hamiltonian, like the rest mass, becomes positive definite.

The hyperplane formalism corresponding to equation (45) out of the mass
shell is equivalent to the Hall and Anderson formalism, identifying t m with

e n m . Moreover, it is interesting to see the analogy between (45) with the

covariant Hamiltonian (34), identifying e n m (whose temporal component is

n 0
t 5 e ) with g m (notice that the eingenvalues of g 0 are 6 1).

Finally, in contrast with the standard case, the scalar product associated

with the new Dirac equation (46) is indefinite, i.e.,

^ c , c & 5 # c g m c d s m
j 5 e # c g m c n m d s t (47)

As in the case of equation (36), this indefiniteness arises as a consequence

of describing particle and antiparticle dynamics with the same label.

To summarize, the relation between the standard canonical picture and
the Feynman±StuÈ ckelberg one can be synthesized as follows:

In the first one the mass, the kinetic energy, and the scalar product

are always positive definite. Both particles and antiparticles go forward in

coordinate time and proper time, and they are only distinguished by the sign

of the charge. In the second case, both particles and antiparticles have positive

16 This property, emphasized by Feynman (1948, 1949) at the classical level, also holds in the
quantum case (Garcia Alvarez and Gaioli, 1997b).
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mass, but only the proper time evolution goes forward for both species.

Particles and antiparticles have positive and negative kinetic energy, respec-

tively, and according to this they go forward and backward in coordinate
time. The charges are the same for both species, which avoids the use of a

many-particle formalism in order to describe particle creation and annihilation

processes.17 As a consequence we also have an indefinite scalar product,

something which goes against our standard notions. Moreover, this is why

Dirac disregarded the Klein±Gordon equation (Weinberg, 1995). But, like

the double sign in the energy, it has its roots in the indefinite metric of the
Minkowski space-time manifold (1).18 In other words, while the second

picture seems to be a natural way for adapting the principles of quantum

mechanics to the theory of relativity, the first one looks like a deliberate

attempt to keep our old picture of nonrelativistic quantum mechanics for

describing the full relativistic quantum phenomena.
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